trimethylsilyl chloride ($.22 \mathrm{~mL}, 1.73 \mathrm{mmol}$) were added. After 20 min $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added, the solution was washed with 1 M aqueous $\mathrm{Na}_{2} \mathrm{HPO}_{4} / \mathrm{KH}_{2} \mathrm{PO}_{4}$ (20 mL), the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the combined organic phase was dried, filtered, and evaporated to give the crude silyl enol ethers ($436 \mathrm{mg}, 90 \%$ yield). These ethers and $\mathrm{Pd}(\mathrm{OAc})_{2}(367 \mathrm{mg})$ in $\mathrm{CH}_{3} \mathrm{CN}(16 \mathrm{~mL})$ were stirred for 42 h , during which time a Pd mirror formed. Filtration through silica (EtOAc/hexane, 33/67) followed by MPLC (EtOAc/hexane, 1/4) gave pure 27 d (72 mg , 19% recovery), a $1 / 4$ mixture of 27 d and 28 d (46 mg , 12% recovery), and after distillation Boc-anatoxin (32b, $154 \mathrm{mg}, 41 \%$ yield): bp $110^{\circ} \mathrm{C}$ (0.10 torr); TLC (EtOAc/hexane, 25/75) $R_{f} 0.22 ; \mathrm{lR}$ 1691, $1667,1400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.36,1.43(9 \mathrm{H}, \mathrm{s}), 1.60-1.80(3 \mathrm{H}$, $\mathrm{m}), 2.00-2.55(5 \mathrm{H}, \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s}), 4.25-4.45(1 \mathrm{H}, \mathrm{m}), 5.15-5.25$ $(1 \mathrm{H}, \mathrm{m}), 6.82(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}) ;(1 S)-\mathbf{3 2 b} ;[\alpha]^{24}{ }_{\mathrm{D}}+51.9^{\circ}(c 0.795$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;(1 R)-32 \mathrm{~b},[\alpha]^{24} \mathrm{D}^{-47.2^{\circ}}\left(c 0.839, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.9$, $25.2,28.2,28.5,30.1,31.2,32.3,52.8,55.5,79.0,142.0,150.1,152.9$, 197.5. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Acetyl-9-azablcyclo[4.2.1]-2-nonene [(1S)-2 and (1R)-1]. A solution of Boc-anatoxin ($\mathbf{3 2 b}, 39 \mathrm{mg}, 0.147 \mathrm{mmol}$) and trifluoroacetic acid (0.39 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred for 1 h , the solution was poured into cold saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$; then $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and 1 M aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~mL})$ were added. The phases were separated, and the aqueous phase was extracted with $\mathrm{CHCl}_{3}(2 \times 20 \mathrm{~mL})$. The organic phases were dried and filtered. This solution could be evaporated to give the free base. Alternatively a 1.2 M ethanolic HCl solution (1.5 mL) was added; the solution was stirred briefly, evaporated, and dried $\left(25^{\circ} \mathrm{C}\right.$, 0.10 torr, 15 h) to give anatoxin- a hydrochloride as a glass ($29 \mathrm{mg}, 97 \%$ yield). Anatoxin (free base): TLC ($\left.\mathrm{MeOH} / \mathrm{CHCl}_{3}, 10 / 90\right) R_{f} 0.05$ (streaking); ${ }^{1} \mathrm{H}$ NMR $\delta 1.50-2.25(7 \mathrm{H}, \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.40-2.55(2$ $\mathrm{H}, \mathrm{m}), 3.70-3.83(1 \mathrm{H}, \mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.88(1 \mathrm{H}$, ddd, $J=1.2,4.8,7.0 \mathrm{~Hz})$. Anatoxin hydrochloride: $\operatorname{TLC}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}\right.$, 10/90) $R_{f} 0.05-0.12$; UV (absolute EtOH) $\lambda_{\max } 226 \mathrm{~nm}, \epsilon 10700$ (lit. ${ }^{46}$ UV ($95 \% \mathrm{EtOH}$) $\lambda_{\text {max }} 226 \mathrm{~nm}, \epsilon 8500$); ${ }^{1} \mathrm{H}$ NMR $\delta 1.75-2.00(3 \mathrm{H}, \mathrm{m})$, 2.20-2.75 ($5 \mathrm{H}, \mathrm{m}$), $2.32(3 \mathrm{H}, \mathrm{s}), 4.27-4.40(1 \mathrm{H}, \mathrm{m}), 5.15-5.25(1 \mathrm{H}$, $\mathrm{m}), 7.12(1 \mathrm{H}$, dd, $J=3.7,7.7 \mathrm{~Hz}), 9.30-9.50(1 \mathrm{H}, \mathrm{s}), 9.85-10.05(1$ $\mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 23.6,25.2,27.5,27.8,30.3,52.1,58.3,143.8,145.4$,
196.4; (1S)-2, $[\alpha]^{23}$ D -46.3 (c 0.574, absolute EtOH$) ;\left(1 R-1,[\alpha]^{24}{ }_{\mathrm{D}}\right.$ +43.2 (c 0.676, absolute EtOH) [lit. ${ }^{4 c}[\alpha]^{24}{ }_{\mathrm{D}}+36^{\circ}$ (c 0.85, EtOH)].

2-Acetyl-9-azabicyclo[4.2.1]nonane [(1S)-27b;28b and (1R)-27b,28b] Hydrochloride. Boc-dihydroanatoxin (27d/28d, 148 mg) was converted to a $3 / 1$ mixture of β - and α-dihydroanatoxin hydrochlorides (106 mg , 94% yield) by use of the procedure described for Boc-anatoxin. The amorphous solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ to give pure β-dihydroanatoxin (28b) hydrochloride: mp 170-172 ${ }^{\circ} \mathrm{C}$; TLC ($\mathrm{MeOH} / \mathrm{CHCl}_{3}, 10 / 90$) $R_{\mathrm{f}} 0.10-0.20$ (streaking); ${ }^{1} \mathrm{H}$ NMR $\delta 1.50-2.40$ ($10 \mathrm{H}, \mathrm{m}$), 2.17 ($3 \mathrm{H}, \mathrm{s}$), $2.62(1 \mathrm{H}, \mathrm{dd}), 4.20-4.35(1 \mathrm{H}, \mathrm{m}), 4.60-4.75$ ($1 \mathrm{H}, \mathrm{m}$), 9.00-9.20 ($1 \mathrm{H}, \mathrm{s}$), 10.00-10.20 ($1 \mathrm{H}, \mathrm{s}$); ${ }^{13} \mathrm{C}$ NMR $\delta 21.5$, $26.7,27.1,27.7,30.9,31.1,55.4,55.8,58.1,207.7$, α-Dihydroanatoxin (27b) hydrochloride: $\mathrm{TLC}\left(\mathrm{MeOH} / \mathrm{CHCl}_{3}, 1 / 9, R_{f} 0.23-0.27\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 2.20(\mathrm{~s}), 3.35-3.50(\mathrm{~m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 21.5,24.3,24.6,28.9,31.2$, 31.4, 52.7, 56.5, 57.6, 207.4.

2-Acetyl-9-(methoxy(trifluoromethyl) phenylacetyl)-9-azabicyclo-[4.2.1]-2-nonene $[(1 S)-32 \mathrm{c}$ and ($1 R)-32 \mathrm{c}]$. A solution of anatoxin (from Boc-anatoxin, $45 \mathrm{mg}, 0.17 \mathrm{mmol}$) and N-methylmorpholine (0.04 mL) was added to a solution of (-)-MTPA chloride ${ }^{38}$ ($75 \mathrm{mg}, 0.28 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After $1.5 \mathrm{~h}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added, the solution was washed with 0.5 M aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}(20 \mathrm{~mL})$, the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the combined organic phase was dried, filtered, and evaporated to an oil. The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR and HPLC of this material. Column chromatography (EtOAc/hexane, 1/2) gives the pure amide 32c (51 mg , 79% yield). Amide 32c from (+)-anatoxin: TLC (EtOAc/hexane, 1/2) $R_{f} 0.21 ; \mathrm{HPLC}\left(\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}, 45 / 55\right.$, Ultrasphere (ODS $5 \mathrm{RP}, 1.5$ $\mathrm{mL} / \mathrm{min}) t_{\mathrm{R}} 18.6 \mathrm{~min}, 6.5 \%$ minor diastereomer; ${ }^{1} \mathrm{H}$ NMR $\delta 1.20-2.60$ $(8 \mathrm{H}, \mathrm{m}), 2.26,2.35(3 \mathrm{H}, \mathrm{s}), 3.60-3.70(3 \mathrm{H}, \mathrm{m}), 4.70-4.90(1 \mathrm{H}, \mathrm{m})$ 4.93-5.04 ($1 \mathrm{H}, \mathrm{m}$), 6.70-6.78 (m) and $6.84(\mathrm{t}, J=5.4 \mathrm{~Hz})$ total 1 H , 7.35-7.60 ($5 \mathrm{H}, \mathrm{m}$). Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. Amide 32c from (-)-anatoxin: TLC (EtOAc/hexane, 1/2) $R_{f} 0.21$; HPLC (as above) t_{R} $15.1 \mathrm{~min}, 2 \%$ minor diastereomer; ${ }^{1} \mathrm{H}$ NMR $\delta 1.50-2.55(8 \mathrm{H}, \mathrm{m}), 1.77$ ($3 \mathrm{H}, \mathrm{s}$), $3.70(3 \mathrm{H}, \mathrm{q}, J=2.4 \mathrm{~Hz}), 4.70-4.85(1 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{d})$, $6.27(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}), 7.20-7.60(5 \mathrm{H}, \mathrm{m})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{3}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Stereocontrolled Total Synthesis of (-)-Picrotoxinin and $(+)$-Coriamyrtin via a Common Isotwistane Intermediate

Haruki Niwa, Kazumasa Wakamatsu, Tsuneaki Hida, Kenji Niiyama, Hideo Kigoshi, Mayumi Yamada, Hiroshi Nagase, Masaaki Suzuki, and Kiyoyuki Yamada*

Contribution from the Department of Chemistry, Faculty of Science. Nagoya University, Chikusa. Nagoya 464, Japan. Received July 5. 1983

Abstract

Stereocontrolled total synthesis of (-)-picrotoxinin (1) and (+)-coriamyrtin (2), toxic sesquiterpenoids of plant origin, is described, utilizing isotwistane compounds as common and key intermediates.

Picrotoxin, the poisonous principle isolated first in 1811 from the plant Menispermum cocculus, ${ }^{1}$ is a molecular compound composed of toxic picrotoxinin (1) and nontoxic picrotin. It took about 150 years for the complex structure of 1 to be elucidated. ${ }^{2}$ Picrotoxinin (1) has been known not only as one of the most toxic compounds of plant origin but also as the substance indispensable to the neuropharmacological studies. ${ }^{3}$ Coriamyrtin (2), the toxin isolated initially in 1864 from the European Coriaria species ${ }^{4 a}$ and later from the same species native in Japan, ${ }^{4 \mathrm{~b}}$ belongs to the picrotoxane group, and the unique structure $\mathbf{2}$ was established in

[^0]1964. ${ }^{5}$ The biological properties of 2 are known to be similar to those of $1 .{ }^{6}$ Total synthesis of $(-)-1^{7}$ and (-)-picrotin ${ }^{8}$ by Corey and Pearce was reported in 1979 and in 1980, respectively, and that of racemic 2^{9} by Inubushi et al. in 1982.

2
(5) Okuda, T.; Yoshida, T. Tetrahedron Lett. 1964, 439, 694; 1965, 4191
(6) Porter, L. A. Chem. Rev. 1967, 67, 441.
(7) Corey, E. J.; Pearce, H. L. J. Am. Chem. Soc. 1979, 101, 5841.
(8) Corey, E. J.; Pearce, H. L. Tetrahedron Lett. 1980, 2l, 1823.
(9) Tanaka, K.; Uchiyama, F.; Sakamoto. K.: Inubushi, Y. J. Am. Chem. Soc. 1982, 104, 4965.

Scheme 1

Described herein is the stereocontrolled total synthesis of (-)-1 and (+)-2 via a common isotwistane intermediate, using a novel bridgehead hydroxylation of the bicyclo[3.2.1]octan-2-one part included in the isotwistane skeleton as one of the key steps.

A carboxylic acid 3^{10} was esterified $\left(\mathrm{CH}_{2} \mathrm{~N}_{2}\right)$ and the ester 4 was converted by epoxidation with MCPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subsequent treatment with DBU in benzene into a separable $3: 1$ mixture of diastereomeric conjugated enones, $\mathbf{5 a}$ and $\mathbf{5 b}$ (78%). Deacetalization of the mixture of $\mathbf{5 a}$ and $\mathbf{5 b}$ followed by double cyclization with diethylamine in aqueous MeOH provided a separable 6:5 mixture of epimeric keto esters having the isotwistane skeleton, $\mathbf{6 a}$ and $\mathbf{6 b}$ (98% from $\mathbf{5}$). The NMR spectral data of $\mathbf{6 a}$ and $\mathbf{6 b}$ suggested the indicated stereochemical assignments. Separation of $6 a$ and 6 b was not necessary, since the mixture of 6a and $\mathbf{6 b}$ could be led to a single compound 7 possessing the desired stereochemistry as to the ester group (51%) by acetalization and subsequent treatment with NaOMe in MeOH . The ester 7 was transformed into ketone 8 in 56% overall yield in four steps: (1) reduction $\left(\mathrm{LiAlH}_{4}\right) ;$ (2) tert-butyldimethylsilylation; ${ }^{11}$ (3) oxidation (buffered PCC); ${ }^{12}$ and (4) methylation (MeI-NaH, DMF). The bridgehead enolate of $\mathbf{8}$ was reacted with MoO_{5}. Py-HMPA ${ }^{13}$ to give an α-hydroxy ketone $9(87 \%){ }^{14}$ It is worthy of note that success of the bridgehead hydroxylation in 8 is due to the conformational factor: the cyclohexanone ring in the bi-cyclo[3.2.1]octan-2-one moiety in $\mathbf{8}$ is locked in the boat form (see i in footnote 15), making generation of the bridgehead enolate favorable. ${ }^{15}$ Reaction of 9 with methyllithium in ether gave a

[^1]

16:1 mixture of diastereomeric 1,2 -diols, oxidative cleavage of which with lead tetraacetate in benzene followed by base-catalyzed epimerization ${ }^{16}$ (t-AmOK, t-AmOH-benzene) provided diketone $10(61 \%) .{ }^{17}$ Although simultaneous methylenation of both keto groups in 10 in a single step was examined, the desired diolefin 12 was obtained in quite low yield. Methylenation of the methyl ketone group in 10 was effected by the Johnson method ${ }^{18}$ to give keto olefin 11 (67%), the Wittig reaction of which under the Conia conditions ${ }^{19}$ provided $12(87 \%)$. Conversion of $\mathbf{1 2}$ into diol 13 was executed in 89% yield by the following two-step sequence: (1) simultaneous deacetalization and desilylation under the acidic conditions and (2) stereospecific reduction of the keto group by sodium (EtOH , wet $\mathrm{Et}_{2} \mathrm{O}$). ${ }^{20}$ It should be noted that reduction of the keto group in the deacetalization compound of 12 with a variety of complex metal hydrides [$\mathrm{LiAlH}_{4}, \mathrm{LiAlH}(t-\mathrm{BuO})_{3}$, DIBAL, L-Selectride (Aldrich) etc.] yielded exclusively a diastereomer of 13 regarding the secondary hydroxyl group. Optical resolution of $\mathbf{1 3}$ was conducted by the following sequence: (1) conversion of $13\left[(+) \cdot \mathrm{PhCCF}_{3}(\mathrm{OMe}) \mathrm{COCl}\right]$ into diastereomeric bis-MTPA esters followed by chromatographic separation and (2) reduction of the ester $\left(\mathrm{LiAlH}_{4}\right)$ to give (+)-13 [29\% from (\pm) 13$]$.
(16) Epimerization employing sodium methoxide ($\mathrm{MeOH}, 25^{\circ} \mathrm{C}$) was examined, resulting in the preferential formation of the intramolecular aldol product (iii) and its desilylated derivative.

(17) The approach for effecting the $\mathrm{C}-\mathrm{C}$ bond cleavage of the isotwistane skeleton by a method other than that described ($8 \rightarrow 9 \rightarrow 10$) was also investigated: bridgehead methylation of 8 (LDA; Mel, THF, $-78^{\circ} \mathrm{C}$) afforded a ketone (iv), Baeyer-Villiger oxidation of which was attempted under various conditions only to recover iv.

(18) Johnson, C. R.; Kirchhoff, R. A. J. Am. Chem. Soc. 1979, 101, 3602.
(19) Conia, J. M.; Limasset, J. C. Bull. Soc. Chim. Fr. $1967,1936$.
(20) In the second step of the conversion, $\mathbf{1 2} \rightarrow 13$, immediate neutralization of bases produced during reduction by ion-exchange resin $1 \mathrm{RC}-50$ was vital, since a trace amount of such bases catalyzed isomerization of the isopropenyl to the isopropylidene group.

Scheme II

Conversion of (+)-13 into cyclic ether (-)- $\mathbf{1 4}$ was carried out in 65% yield by selective sulfonylation ${ }^{21}$ of the primary hydroxyl group with d-camphorsulfonyl chloride in pyridine and subsequent intramolecular $\mathrm{S}_{\mathrm{N}} 2$ displacement with NaH in DME. When $(-)-14$ was subjected to the action of N-bromosuccinimide (NBS) in aqueous THF at $-78^{\circ} \mathrm{C}$, formation of the bromo ether with concomitant cleavage of the methyl ether grouping occurred, providing a mixture of two epimeric bromo ethers (-)-15a (37\%) and $\mathbf{1 5 b}{ }^{22}(28 \%)$, from which $(-)-15 a$ was separated. Further treatment of (-)-15a with NBS in THF at $25^{\circ} \mathrm{C}$ gave a separable mixture of dibromides (- - $\mathbf{1 6 a}(40 \%$) and $\mathbf{1 6 b}$ (two epimers, 31%). Transformation of (-)-16a into epoxide (-)-17 was achieved in 67% overall yield in two steps: (1) hydrolysis $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, aqueous THF) to the allylic alcohol and (2) epoxidation (MCPBA). Oxidative cyclization of (-)-17 was effected with lead tetraacetate in benzene at reflux to give an epoxy cyclic ether $(-)-18$ in 41% yield. Ruthenium tetraoxide $\left(\mathrm{RuO}_{4}\right)$ oxidation ${ }^{23}$ of $(-)-18$ at 50 ${ }^{\circ} \mathrm{C}$ under the buffered conditions gave bromo dilactone (-)-19 (36\%), which was identical with (-)- β-bromopicrotoxinin ${ }^{26,24}$ obtained from natural 1. Reduction of $(-)-19$ with zinc powder yielded synthetic (-)-picrotoxinin (1) in 99% yield, identity of which with natural 1^{24} was secured by spectral (IR, ${ }^{1} \mathrm{H}$ NMR, MS, $[\alpha]_{D}$) and chromatographic comparison.

The mixture of dibromides (-)-16a and 16b, without separation, was dehydrobrominated with t - BuOK in toluene at reflux to give a conjugated diene, which was then treated with NBS in aqueous THF affording allylic alcohol (-)-20 as a sole product in 43% overall yield. Action of t - BuOK on $(-)-20$ in toluene at $70^{\circ} \mathrm{C}$ provided allylic epoxide (-)-21 (82\%), which on oxidation with MCPBA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielded diepoxide (-)-22 (54\%). The RuO_{4} oxidation of (-)-22 under the buffered conditions afforded in 58% yield diepoxy lactone $(-)-23$, identical with (-)- α-bromocoria-

[^2]myrtin ${ }^{25}$ derived from natural 2. Reduction of (-) $\mathbf{- 2 3}$ with zinc powder provided synthetic (+)-coriamyrtin (2) in 99% yield and proved to be identical with natural $2^{4 \mathrm{~b}}$ by spectral (IR, ${ }^{1} \mathrm{H}$ NMR, MS, $[\alpha]_{\mathrm{D}}$) and chromatographic comparison.

Experimental Section ${ }^{26}$

Conjugated Enones 5 a and 5b. Treatment of 3^{10} with ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ gave 4 as an oil quantitatively. Epoxidation of $4(520 \mathrm{mg}, 1.84 \mathrm{mmol})$ with MCPBA ($432 \mathrm{mg}, 2.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ for 3 h gave an oily product, which was treated with DBU ($0.44 \mathrm{~mL}, 2.95$ mmol) in benzene (22 mL) at room temperature to afford an oily mixture. Column chromatography on silica gel ($1: 1$ hexane-EtOAc) gave $429 \mathrm{mg}(78 \%)$ of a $\mathbf{3 : 1}$ mixture of $\mathbf{5 a}$ and $\mathbf{5 b}$. Separation of the mixture by preparative TLC ($3: 1 \mathrm{CHCl}_{3}$-ether, developed twice) gave $\mathbf{5}$ a and $\mathbf{5 b}$ as a colorless oil, respectively. 5a: IR $3500,1740,1715,1670,1630 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.07(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.60-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{dd}, J$ $=12.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.80-4.00(\mathrm{~m}, 4 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}$, OH), 4.83 (br $\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.84(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{m} / e$ calcd for C_{15} $\mathrm{H}_{22} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right) 298.1410$, found 298.1427. 5b: IR $3470,1740,1710,1670$, $1620 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.03(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.64(\mathrm{dd}, J=17.5$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{ddd}, J=17.5,3.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=5.5$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.80-4.00(\mathrm{~m}, 4 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.87$ (br t, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.79(\mathrm{~m}, 1 \mathrm{H}) ; m / e$ calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$ 298.1410, found 298.1413.

Keto Esters $\mathbf{6 a}$ and $\mathbf{6 b}$. A solution of a mixture of $\mathbf{5 a}$ and $\mathbf{5 b}(626 \mathrm{mg}$, $2.10 \mathrm{mmol})$ in $\mathrm{AcOH}(33 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(11 \mathrm{~mL})$ was stirred for 4 h at $45^{\circ} \mathrm{C}$. Normal workup gave a crude oily product (560 mg), which was dissolved in $\mathrm{MeOH}(57 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(2.8 \mathrm{~mL})$. To the stirred solution was added $\mathrm{Et}_{2} \mathrm{NH}(2.8 \mathrm{~mL}, 27.1 \mathrm{mmol}$), and the mixture was stirred for 13 h at room temperature. Normal workup afforded a $6: 5$ mixture of two diastereomers $\mathbf{6 a}$ and $\mathbf{6 b}$ almost quantitatively. Recrystallization from EtOH provided $107 \mathrm{mg}(20 \%)$ of 6 a : the residue obtained on evaporation of the mother liquor was separated by preparative TLC ($1: 1$ benzene-acetone) to give an additional 176 mg (33%) of 6 for a total yield of $283 \mathrm{mg}(53 \%)$ and $240 \mathrm{mg}(45 \%)$ of $\mathbf{6 b}$, respectively. $6 \mathbf{a}: \mathrm{mp}$
(25) Okuda, T.; Yoshida, T. Chem. Pharm. Bull. 1967, 15, 1687.
(26) IR spectra were obtained with a JASCO Model IRS spectrophotometer in CHCl_{3} solution unless otherwise noted, ${ }^{1} \mathrm{H}$ NMR spectra were measured at 90 MHz on a JEOL FX-90QE spectrometer in CDCl_{3} unless otherwise indicated. Mass spectra were recorded on a Hitachi RMU-6C spectrometer and on a JEOL JMS-DX300 instrument. Optical rotations were measured with a JASCO DlP-4 polarimeter. Fuji-Davison silica gel BW-80 was employed for column chromatography. Merck precoated silica gel 60F254 plates were used for thin-layer chromatography (TLC) and Merck silica gel PF254 for preparative thin-layer chromatography. Melting points are not corrected.
$195^{\circ} \mathrm{C} \mathrm{dec}$; IR (KBr) $3430,1726 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.99$ (s , $3 \mathrm{H}), 2.16(\mathrm{~d}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~d}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ (br $\mathrm{d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 4.20(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}) ; m / e$ calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 254.1149$, found 254.1172. 6b: amorphous solid; IR (KBr) $3440,1733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.96$ $(\mathrm{s}, 3 \mathrm{H}), 2.06(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~d}, J=19.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52$ $(\mathrm{d} \mathrm{d}, J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H})$; mass spectrum m / e (relative intensity) $254\left(\mathrm{M}^{+}\right.$, 64), 239 (11), 236 (37), 222 (22), 207 (22), 204 (46), 121 (100).

Ester 7. Acetalization of the mixture of $\mathbf{6 a}$ and $\mathbf{6 b}(355 \mathrm{mg}, 1.40$ mmol) with ethylene glycol and p-toluenesulfonic acid in benzene at reflux under a Dean-Stark trap gave a crude oily mixture of acetals (415 mg), which was dissolved in a 0.45 M solution of NaOMe in MeOH (1.50 mL) and the solution stirred for 6 h at room temperature. Amberlite IRC-50 (acid form, 640 mg) was added, and the mixture was passed through a column of Amberlite IRC-50 (640 mg) with MeOH . The combined organic solutions were concentrated to give a viscous oily product. Purification by column chromatography on silica gel (1:1 benzene-ether) gave 212 mg (51%) of 7 as colorless crystals: mp 149.5-150.5 ${ }^{\circ} \mathrm{C}$ (hexane); IR $3480,1740 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\delta 0.90(\mathrm{~s}, 3 \mathrm{H})$, $1.80(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.60-4.10$ $(\mathrm{m}, 5 \mathrm{H}), 4.34(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) ; m / e$ calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right)$ 298.1410 , found 298.1439.

Ketone 8. Reduction of 7 ($71.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) with LiAlH_{4} in THF at $0^{\circ} \mathrm{C}$ gave an oily triol, the primary hydroxyl group of which was silylated by the procedure of Corey et al. ${ }^{11}$ to afford a crude product: purification by column chromatography on silica gel (ether) provided $55.0 \mathrm{mg}(60 \%)$ of the dihydroxy acetal, $\mathrm{mp} 123.5-125^{\circ} \mathrm{C}$ (ether); IR $3500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.08$ (s, 6 H), 0.81 (s, 9 H), $1.74(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{br} \mathrm{d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (d d, $J=10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d} \mathrm{~d}, J=10.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-4.10$ $(\mathrm{m}, 4 \mathrm{H}), 4.38(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH})$. Subsequently oxidation of the dihydroxy acetal ($70.5 \mathrm{mg}, 0.18 \mathrm{mmol}$) was made by buffered PCC, ${ }^{12}$ and the resulting crude product was purified by preparative TLC (1:1 benzene-EtOAc) to give $70.1 \mathrm{mg}(100 \%)$ of the keto acetal as an amorphous solid: IR $3560,1722 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.07(\mathrm{~s}, 6 \mathrm{H}), 0.89$ $(\mathrm{s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.40(\mathrm{~d} \mathrm{~d}, J=10.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d} \mathrm{~d}, J$ $=10.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-4.10(\mathrm{~m}, 4 \mathrm{H})$. Finally the tertiary hydroxyl group of the keto acetal $(73.6 \mathrm{mg}, 0.19 \mathrm{~Hz}$, was methylated with Mel and NaH in DMF at room temperature, and the crude product was purified by preparative TLC (1:1 hexane-ether) to provide 71.8 mg (94% : 56% overal from 7) of 8: $\mathrm{mp} 90-91^{\circ} \mathrm{C}$ (hexane); IR $1723 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.40$ (d d, $J=10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d} \mathrm{~d}, J=10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-4.10$ $(\mathrm{m}, 4 \mathrm{H}) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{M}^{+}\right) 396.2322$, found 396.2340 .
α-Hydroxy Ketone 9. A 0.2 M solution of lithium diisopropylamide in THF ($1.8 \mathrm{~mL}, 0.36 \mathrm{mmol}$) was slowly added to a solution of $8(33.0$ $\mathrm{mg}, 0.083 \mathrm{mmol}$) in THF (0.8 mL) at $-78^{\circ} \mathrm{C}$ with stirring under nitrogen. To the solution was added a molybdenum peroxide reagent ${ }^{13}$ ($\mathrm{MoO}_{5} \cdot \mathrm{Py} \cdot \mathrm{HMPA}$) ($186 \mathrm{mg}, 0.428 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was allowed to warm to $-50^{\circ} \mathrm{C}$ and stirred for 1.5 h at $-50^{\circ} \mathrm{C}$; a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (0.3 mL) was added, and the mixture was warmed to room temperature, diluted with $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{~mL})$, and extracted with ether $(4 \times 30 \mathrm{~mL})$. The combined organic layers were washed with saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by preparative TLC ($1: 3$ hexane-ether) to give 30.0 mg (87%) of crystalline 9: $\mathrm{mp} 98-99^{\circ} \mathrm{C}$ (hexane); IR $3560,1733 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.05(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.84 (br s, $1 \mathrm{H}, \mathrm{OH}$), $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J=11.0,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~d} \mathrm{~d}, J=11.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-4.10(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{M}^{+}\right) 412.2271$, found 412.2276 .

Diketone 10. Methyllithium in ether (1.5 mL of $1.45 \mathrm{M}, 2.2 \mathrm{mmol}$) was added to a solution of $9(44.0 \mathrm{mg}, 0.107 \mathrm{mmol})$ in ether $(2.4 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred for 2 h at room temperature. Normal workup and purification by preparative TLC (1:5 hexane-ether) gave $31.0 \mathrm{mg}(68 \%)$ of a major diastereomer and 1.9 mg (4\%) of a minor one. Properties of the major diastereomer are as follows: mp $80-81^{\circ} \mathrm{C}(\mathrm{EtOH}) ; 1 \mathrm{R} 3380 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.07$ (s, 6 H), 0.89 (s, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~d}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}$, $3 \mathrm{H}), 3.60(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d} \mathrm{~d}, J=10.5,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.80-4.10 (m, 4 H), $4.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. A mixture of the major diastereomer ($24.9 \mathrm{mg}, 0.058 \mathrm{mmol}$) and $\mathrm{Pb}(\mathrm{OAc})_{4}(76.8$ $\mathrm{mg}, 0.17 \mathrm{mmol}$) in benzene (2.5 mL) was stirred for 1 h at room temperature. Normal workup and purification by preparative TLC (2:3 hexane-ether) provided $23.8 \mathrm{mg}(96 \%)$ of an oxidized product: $\mathrm{mp} 87-89$
${ }^{\circ} \mathrm{C}$ (hexane); IR 1737, $1718 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.06$ (s, 3 H), 0.07 (s, 3 H), 0.91 ($\mathrm{s}, 9 \mathrm{H}$), $1.15(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 3.80-4.00$ ($\mathrm{m}, 4 \mathrm{H}$). Oxidation of the minor diastereomer with $\mathrm{Pb}(\mathrm{OAc})_{4}$ also afforded the oxidized product described above (95\%). To a solution of the oxidized product ($13.7 \mathrm{mg}, 0.032 \mathrm{mmol}$) in t-AmOH $(0.5 \mathrm{~mL})$ was added t-AmOK in benzene (0.025 mL of $0.68 \mathrm{M}, 0.017 \mathrm{mmol}$). The mixture was stirred for 2 h at room temperature. After normal workup, the crude product was purified by preparative TLC ($4: 1 \mathrm{CHCl}_{3}-\mathrm{EtOAc}$) to give $12.1 \mathrm{mg}(88 \%)$ of $10: \mathrm{mp} \mathrm{153.5-154}^{\circ} \mathrm{C}$ (hexane); $\mathrm{R} ~ 1738,1716$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 3$ H), $1.40(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3$ H), 2.64 (d d d, $J=11.0,4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J$ $=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d} \mathrm{~d}, J=10.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-4.10(\mathrm{~m}, 5 \mathrm{H})$; m / e calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{M}^{+}\right) 426.2427$, found 426.2413 .

Keto Olefin 11. Olefination of 10 was carried out by the procedure of Johnson. ${ }^{18}$ Addition of (N-methylphenylsulfonimidoyl)methyllithium (generated by reaction of N, S-dimethyl- S-phenylsulfoximine and butyllithium in THF) to $10(29.0 \mathrm{mg}, 0.068 \mathrm{mmol})$ was effected in THF at $0{ }^{\circ} \mathrm{C}$ to afford a crude β-hydroxysulfoximine as an oil, which, without purification, underwent reductive elimination on treatment with $\mathrm{Al}-\mathrm{Hg}$ in THF-AcOH- $\mathrm{H}_{2} \mathrm{O}$ at room temperature to give crude 11. Purification by preparative TLC ($1: 1$ hexane-ether) provided $19.3 \mathrm{mg}(67 \%)$ of 11 : mp $125.5-126^{\circ} \mathrm{C}(\mathrm{MeOH})$; IR $3080,1735,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.01$ (s, 3 H), 0.03 (s, 3 H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.83$ (br s, 3 H), $2.80(\mathrm{br} \mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~d} \mathrm{~d}, J$ $=10.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-4.10(\mathrm{~m}, 5 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 1 \mathrm{H})$; m / e calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{M}^{+}\right) 424.2634$, found 424.2649 .

Diolefin 12. By the procedure of Conia, ${ }^{19} 11(9.2 \mathrm{mg}, 0.022 \mathrm{mmol})$ was reacted at reflux with an ylide generated from methyltriphenylphosphonium bromide and t-AmOK in benzene. Purification by preparative TLC ($7: 1$ hexane-ether) gave 8.0 mg (87%) of 12 as colorless crystals: mp $111-112^{\circ} \mathrm{C}(\mathrm{MeOH}) ;$ IR $3080,1645 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR δ $0.01(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3$ $\mathrm{H}), 3.50-4.05(\mathrm{~m}, 6 \mathrm{H}), 4.75(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~m}, 1 \mathrm{H})$; m / e calcd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}\left(\mathrm{M}^{+}\right) 422.2841$, found 422.2836 .

Diol 13. A solution of $\mathbf{1 2}$ ($19.9 \mathrm{mg}, 0.047 \mathrm{mmol}$) in $10 \% \mathrm{HCl}(1 \mathrm{~mL})$ and THF (1 mL) was stirred for 3.5 h at room temperature. Normal workup and purification by preparative $\operatorname{TLC}\left(4: 1 \mathrm{CHCl}_{3}-\mathrm{EtOAc}\right)$ gave 11.8 mg (95%) of a hydroxy ketone: $\mathrm{mp} 100-101^{\circ} \mathrm{C}$ (hexane); IR 3460 , $1715,1648 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3$ $\mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 2 \mathrm{H}), 5.03(\mathrm{~m}, 1 \mathrm{H})$. To a solution of the hydroxy ketone ($5.2 \mathrm{mg}, 0.020 \mathrm{mmol}$) in ether saturated with $\mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$ and $\mathrm{EtOH}(0.13 \mathrm{~mL})$ were added $\mathrm{Na}(30.0 \mathrm{mg}, 1.30$ mmol) and Amberlite $\mathrm{IRC}-50$ (acid form, 1 g) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{MeOH}(4 \mathrm{~mL})$, and stirred for 10 min at room temperature. The mixture was passed through a column of Amberlite $1 \mathrm{RC}-50(1.5 \mathrm{~g})$ with MeOH . The combined organic solutions were concentrated to give crude crystals. Purification by preparative TLC ($1: 1$ hexane-EtOAc) afforded 4.9 mg (94\%) of 13: mp $105.5-106{ }^{\circ} \mathrm{C}$; IR 3440, 3080, $1649 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.76$ (br s, 3 H), $2.60(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.80(\mathrm{~m}, 3 \mathrm{H}), 4.70-4.90$ $(\mathrm{m}, 2 \mathrm{H}), 4.85(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{m} / e$ calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right)$ 266.1875, found 266.1872.

Optical Resolution of Diol 13. A solution of $13(6.5 \mathrm{mg}, 0.024 \mathrm{mmol})$, $(+)-\alpha$-methox $y-\alpha$-(trifluoromethyl)phenylacetyl chloride ${ }^{27}$ (MTPA Cl; $30.0 \mathrm{mg}, 0.120 \mathrm{mmol}$), and 4 -(dimethylamino)pyridine ($33 \mathrm{mg}, 0.27$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was stirred for 3 h at room temperature. Normal workup and purification by preparative TLC ($2: 1$ hexane-ether) afforded $6.3 \mathrm{mg}(37 \%)$ of the less polar diastereomer $\left[R_{f} 0.53\right.$ ($2: 1$ hexane-ether)] of bis-MTPA esters and $6.2 \mathrm{mg}(36 \%)$ of the more polar one [$R_{f} 0.47$ ($2: 1$ hexane-ether)] as a viscous oil, respectively. The less polar diastereomer ($7.2 \mathrm{mg}, 0.010 \mathrm{mmol}$) was reduced with LiAlH_{4} in THF at room temperature. Purification by preparative TLC (1:1 hex-ane-EtOAc) gave $2.1 \mathrm{mg}(77 \%)$ of $(+)-13: \mathrm{mp} 84-86^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{23}{ }_{\mathrm{D}}+26^{\circ}\left(c 0.61, \mathrm{CHCl}_{3}\right) ; m / e$ calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 266.1875$, found 266.1872 .
(-)-Cyclic Ether 14. Treatment of (+)-13 ($6.6 \mathrm{mg}, 0.025 \mathrm{mmol}$) with d-camphorsulfonyl chloride ($18.8 \mathrm{mg}, 0.075 \mathrm{mmol}$) in pyridine (0.6 mL) at room temperature for 3 h afforded an oily mixture, which was purified by preparative TLC ($1: 1$ hexane-EtOAc) to give 4.8 mg (83% based on reacted (+)-13) of a monosulfonate as a solid and 3.4 mg (52% recovery) of unreacted $(+)-13$. Properties of the monosulfonate are as follows: IR $3560,1749 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.89(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$, 1.76 (br s, 3 H), 2.91 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.28 (s, 3 H), 3.56 (d, J $=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d} \mathrm{t}, J=4.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d} \mathrm{~d}, J=3.0$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d} \mathrm{~d}, J=2.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~m}, 2 \mathrm{H}), 5.02$ $(\mathrm{m}, 1 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H})$. The monosulfonate $(6.2 \mathrm{mg}, 0.013 \mathrm{mmol})$ was
(27) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.
treated with NaH in DME at reflux for 6 h . Normal workup and purification by preparative TLC ($4: 1$ hexane-EtOAc) provided 2.5 mg (78\%) of 14: $\mathrm{mp} 83.5-85^{\circ} \mathrm{C}$ (pentane); $[\alpha]^{22} \mathrm{D}^{-2.5}{ }^{\circ}$ (c $0.32, \mathrm{CHCl}_{3}$); IR $3080,1640 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{brs}, 3 \mathrm{H}), 2.55(\mathrm{~m}$, $1 \mathrm{H}), 2.75(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.70(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{dt}, J=$ $2.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=3.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ $(\mathrm{m}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=3.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ; m / e$ calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$ 248.1770, found 248.1767 .

Dlastereomeric Bromo Ethers (-)-15a and 15b. Treatment of (-)-14 $(17.0 \mathrm{mg}, 0.068 \mathrm{mmol})$ with NBS ($12.6 \mathrm{mg}, 0.068 \mathrm{mmol}$) in THF (4.8 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ for 2.5 h gave a crude product. Separation and purification by repeating preparative TLC ($3: 1$ hexaneether) twice gave $7.9 \mathrm{mg}(37 \%)$ of (-) $\mathbf{- 1 5 a}$ and $6.0 \mathrm{mg}(28 \%)$ of $\mathbf{1 5 b}$. (-)-15a: mp 52-53 ${ }^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{24} \mathrm{D}-25.8^{\circ}$ (c 0.40, CHCl_{3}); 1 R $3080,1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.99$ (s, 3 H), 1.55 (s, 3 H), 3.43 (d, $J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d} \mathrm{~d}, J=9.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.99(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ; m / e$ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{79} \mathrm{Br}\left(\mathrm{M}^{+}\right)$ 312.0719, found 312.0726. 15b: amorphous solid; ${ }^{1} \mathrm{H}$ NMR $\delta 0.98$ (s, $3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.73(\mathrm{~d} \mathrm{~d}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H})$.

Dibromides (-)-16a and 16b. The bromo ether (-)-15a ($4.6 \mathrm{mg}, 0.015$ mmol) was treated with NBS ($3.1 \mathrm{mg}, 0.017 \mathrm{mmol}$) in THF (0.36 mL) at room temperature for 1 h . Normal workup afforded an oily residue. Separation and purification by preparative TLC ($4: 1$ hexane-EtOAc) provided $2.3 \mathrm{mg}(40 \%)$ of (-)-16a and $1.8 \mathrm{mg}(31 \%)$ of $\mathbf{1 6 b}$ as a solid, respectively. $(-)-16 \mathrm{a}: ~[\alpha]^{27} \mathrm{D}-134^{\circ}\left(c 0.73, \mathrm{CHCl}_{3}\right)$; IR 1037, 1019 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.60(\mathrm{~d} \mathrm{~d}, J=16.0,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19(\mathrm{~d} \mathrm{~d}, J=16.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{brd}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d} \mathrm{~d}$, $J=16.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{br} \mathrm{d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d} \mathrm{~d}, J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{brd}, J=9.0 \mathrm{~Hz}, 1$ $\mathrm{H}), 4.01(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{m} / e$ calcd for $\mathrm{C}_{15^{\circ}}$ $\mathrm{H}_{20} \mathrm{O}_{2}{ }^{79} \mathrm{Br}_{2}\left(\mathrm{M}^{+}\right) 389.9824$, found 389.9860. 16b: $\mathrm{lR} 1040,1018 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.03$ and 1.19 (s each, total 3 H), 1.26 and 1.34 (s each, total $3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 5.53$ and 6.07 (m each, total 1 H); MS m / e (relative intensity) $394\left(\mathrm{M}^{+}+4,15\right), 392\left(\mathrm{M}^{+}+2,30\right)$, $390\left(\mathrm{M}^{+}, 16\right), 379$ (1), 377 (2), 375 (1), 313 (95), 311 (100).
$(-)$-Epoxide 17. A solution of $(-)-16 a(8.7 \mathrm{mg}, 0.022 \mathrm{mmol})$ in THF (0.8 mL) and 0.25 M aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.4 \mathrm{~mL}$) was stirred for 26 h at $55^{\circ} \mathrm{C}$. Normal workup and purification by preparative TLC ($1: 4$ $\mathrm{CHCl}_{3}-\mathrm{EtOAc}$) gave 5.6 mg (77%) of an allylic alcohol as an amorphous solid: IR 3450, 1030, $1024 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.14$ ($\mathrm{s}, 3 \mathrm{H}$), 1.58 ($\mathrm{s}, 3$ $\mathrm{H}), 1.90-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.95(\mathrm{~m}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=9.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{br}$ $\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~m}, 1 \mathrm{H})$. The allylic alcohol ($8.7 \mathrm{mg}, 0.026 \mathrm{mmol}$) was oxidized with MCPBA (14.0 $\mathrm{mg}, 0.081 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.52 \mathrm{~mL})$ for 14 h at room temperature. Normal workup and purification by preparative TLC (1:4 $\mathrm{CHCl}_{3}-\mathrm{Et}$ OAc) provided 7.9 mg (87%) of (-)-17 as an amorphous solid: $[\alpha]^{26}{ }_{\mathrm{D}}$ $-101^{\circ}\left(c 0.68, \mathrm{CHCl}_{3}\right) ; 1 \mathrm{R} 3460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.53$ (s, 3 H), 1.79 (d d, $J=4.1,14.0, \mathrm{~Hz}, 1 \mathrm{H}$), 2.05 (br d, $J=14.0 \mathrm{~Hz}, 1$ H), $2.22(\mathrm{brd}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{t}$, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{br} \mathrm{d}, J=4.1 \mathrm{~Hz}$, 1 H), 3.65 ($\mathrm{brd}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{dd}, J=4.9,10.0, \mathrm{~Hz}, 1 \mathrm{H})$, $4.09(\mathrm{brd}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{m} / e$ calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{79} \mathrm{Br}\left(\mathrm{M}^{+}\right) 344.0617$, found 344.0636 .
$(-)$-Epoxy Cyclic Ether 18. A mixture of (-). 17 ($5.8 \mathrm{mg}, 0.017 \mathrm{mmol}$) and $\mathrm{Pb}(\mathrm{OAc})_{4}(8.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in benzene $(0.5 \mathrm{~mL})$ was stirred at reflux for 1 h . After cooling, the mixture was diluted with ether and filtered through a short Florisil column with EtOAc. The combined organic solutions were concentrated to give an oily residue. Purification by preparative TLC ($\left.1: 4 \mathrm{CHCl}_{3}-\mathrm{EtOAc}\right)$ yielded $2.4 \mathrm{mg}(41 \%)$ of $(-)-18$ as a solid: $[\alpha]^{28}{ }_{\mathrm{D}}-89^{\circ}\left(c 0.33, \mathrm{CHCl}_{3}\right)$; IR $1057,1005 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~d} \mathrm{~d}, J=14.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (d d, $J=14.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.59$ (d d, $J=3.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.28$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.60(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{m} / e$ calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}{ }^{79} \mathrm{Br}$ $\left(\mathrm{M}^{+}\right) 342.0461$, found 342.0490 .
(-)-Bromo Dilactone 19 [(-)- β-Bromopicrotoxinin]. A modified Sharpless ${ }^{23}$ procedure was employed. A mixture of (-) - $18(4.6 \mathrm{mg}, 0.014$ $\mathrm{mmol}), \mathrm{NalO}_{4}(64.0 \mathrm{mg}, 0.299 \mathrm{mmol})$, and $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(1.8 \mathrm{mg}, 0.008$ mmol) in $\mathrm{CCl}_{4}(0.2 \mathrm{~mL}), \mathrm{MeCN}(0.2 \mathrm{~mL})$, and phosphate buffer (0.05 $\mathrm{M}, \mathrm{pH} 6.9 ; 0.3 \mathrm{~mL}$) was stirred at $50^{\circ} \mathrm{C}$ for 40 h . During the reaction, $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(8.0 \mathrm{mg}, 0.036 \mathrm{mmol})$ was occasionally added in portions. Then $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc $(4 \times 10 \mathrm{~mL})$. The combined organic solutions were washed with saturated NaCl solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give an oily residue. Purification by preparative $\operatorname{TLC}\left(1: 4 \mathrm{CHCl}_{3}-\mathrm{EtOAc}\right)$ provided
$1.8 \mathrm{mg}(36 \%)$ of (-)-19 as colorless crystals: $\mathrm{mp} 256^{\circ} \mathrm{C}$ dec; $[\alpha]^{28}{ }_{\mathrm{D}}$ $-132^{\circ}\left(c 0.27, \mathrm{CHCl}_{3}\right)$. The IR, ${ }^{1} \mathrm{H}$ NMR, and mass spectra and the TLC behaviors of $(-)-19$ proved identical with those of $(-)-\beta$-bromopicrotoxinin ${ }^{24}$ prepared from natural picrotoxinin.
(-)-Picrotoxinin (1). By the modified method of Horrmann, ${ }^{24}(-)-19$ $(2.8 \mathrm{mg}, 0.008 \mathrm{mmol})$ was treated with Zn powder and $\mathrm{NH}_{4} \mathrm{Cl}$ in EtOH at reflux for 1 h . Normal workup and purification by preparative TLC ($1: 1$ benzene- EtOAc) gave $2.2 \mathrm{mg}(99 \%)$ of (-)-1 as colorless crystals: mp 201-202 ${ }^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right) ;[\alpha]^{27}{ }_{\mathrm{D}}-6.7^{\circ}\left(c 1.03, \mathrm{CHCl}_{3}\right)$. The natural sample gave $\mathrm{mp} 200-202^{\circ} \mathrm{C}$ and $[\alpha]^{27}{ }_{\mathrm{D}}-6.7^{\circ}\left(c 1.03, \mathrm{CHCl}_{3}\right)$. The IR, ${ }^{1} \mathrm{H}$ NMR, and mass spectra and the TLC behaviors (several solvent systems) of synthetic (-)-1 proved identical in all respects with those of natural picrotoxinin.
(-)-Allylic Alcohol 20. To a solution of the mixture (-)-16a and 16b $(10.0 \mathrm{mg}, 0.026 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$ was added $t-\mathrm{BuOK}(60.0 \mathrm{mg}$, 0.535 mmol) under argon. The mixture was stirred at $110^{\circ} \mathrm{C}$ overnight. After cooling, Amberlite IRC-50 (acid form, 1.4 g) was added and the mixture passed through a column of Amberlite 1 RC-50 (1.4 g). The column was washed with toluene. The combined organic solutions were concentrated to give 7.4 mg (93%) of crystalline conjugated diene: mp $69-71^{\circ} \mathrm{C}$ (pentane); IR $1638 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.16(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}$, $3 \mathrm{H}), 1.77(\mathrm{~d} \mathrm{~d}, J=16.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{brd}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.61(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.45(\mathrm{brt}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H})$, $5.90(\mathrm{~d} \mathrm{~d}, J=6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$. The mixture of the conjugated diene ($10.5 \mathrm{mg}, 0.034 \mathrm{mmol}$) and NBS ($17.8 \mathrm{mg}, 0.098$ mmol) in THF (1.0 mL) and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ was stirred at room temperature for 1.5 h . Normal workup and purification by preparative TLC ($1: 1$ benzene-EtOAc) provided 6.4 mg (46% : 43% overall from 16 a and 16b) of (-)-20 as a colorless viscous oil: $[\alpha]^{23}{ }_{\mathrm{D}}-45.3^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right)$; IR 3600, 3440, 1052, $1020 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.41$ ($\mathrm{s}, 3 \mathrm{H}$), 1.59 (d d, $J=17.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 2.28(\mathrm{~d} \mathrm{~d}, J=17.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{br}$ $\mathrm{s}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 1 \mathrm{H}), 5.98(\mathrm{~m}, 1 \mathrm{H}) ; m / e$ calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{3}{ }^{79} \mathrm{Br}_{2}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 390.9539$, found 390.9575 .
(-)-Allylic Epoxide 21. A mixture of (-)-20 ($14.0 \mathrm{mg}, 0.034 \mathrm{mmol}$) and t-BuOK ($28.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in toluene (1.4 mL) was stirred at $70^{\circ} \mathrm{C}$ for 1 h . The workup as described for the preparation of (-)-20 and purification by preparative TLC ($4: 1$ benzene-EtOAc) afforded 9.2 $\mathrm{mg}(82 \%)$ of (-)-21 as colorless crystals: $\mathrm{mp} 134-135{ }^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{23}{ }_{\mathrm{D}}-154^{\circ}\left(\mathrm{c} 0.77, \mathrm{CHCl}_{3}\right) ;$ IR $1660,1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.21(\mathrm{~s}$, $3 \mathrm{H}), 1.59(\mathrm{~d} \mathrm{~d}, J=16.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~d} \mathrm{~d}, J=$ $16.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d} \mathrm{~d} \mathrm{~d}, J=6.0,5.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ $(\mathrm{d} \mathrm{d}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d} \mathrm{~d}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d} \mathrm{~d} \mathrm{~d}, J=5.0,4.5,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}) ; m / e$ calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3}{ }^{79} \mathrm{Br}\left(\mathrm{M}^{+}\right)$ 326.0512, found 326.0490 .
(-)-Dlepoxide 22. The allylic epoxide (-)-21 ($4.0 \mathrm{mg}, 0.012 \mathrm{mmol}$) was oxidized with MCPBA ($11.0 \mathrm{mg}, 0.062 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ for 39 h at room temperature. Normal workup and purification by preparative TLC ($2: 1$ benzene-EtOAc) afforded 2.3 mg (54%) of (-)-22 as colorless crystals: $\mathrm{mp} 126-127^{\circ} \mathrm{C}$ (hexane); $[\alpha]^{22}{ }_{\mathrm{D}}-89.3^{\circ}$ (c 0.14, CHCl_{3}); IR 1055, $1040,1020 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}$, $3 \mathrm{H}), 2.64(\mathrm{~d} \mathrm{~d}, J=4.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (m, 1 H), $3.17(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1$ H), 3.83-3.87(m, 2 H), $4.41(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}{ }^{79} \mathrm{Br}$ $\left(\mathrm{M}^{+}\right) 342.0461$, found 342.0444 .
(-)-Diepoxy Lactone 23 [(-)- α-Bromocoriamyrtin]. A mixture of $(-)-22(2.0 \mathrm{mg}, 0.006 \mathrm{mmol}), \mathrm{NalO}_{4}(20 \mathrm{mg}, 0.094 \mathrm{mmol})$, and $\mathrm{Ru}-$ $\mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(14.1 \mathrm{mg}, 0.063 \mathrm{mmol})$ in $\mathrm{CCl}_{4}(0.86 \mathrm{~mL}), \mathrm{MeCN}(0.86 \mathrm{~mL})$, and phosphate buffer ($0.05 \mathrm{M}, \mathrm{pH} 6.9 ; 1.33 \mathrm{~mL}$) was stirred for 39 h at room temperature. During the reaction, $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}(21.0 \mathrm{mg}, 0.093$ mmol) and NalO_{4} ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$) were occasionally added in portions, respectively. The workup as described for the preparation of $(-)-19$ and purification by preparative TLC ($2: 1$ benzene-EtOAc) gave $1.2 \mathrm{mg}(58 \%)$ of (-)-23 as colorless crystals, $\mathrm{mp} 219-221^{\circ} \mathrm{C}(\mathrm{EtOH})$; $[\alpha]^{26}{ }_{\mathrm{D}}-132^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right)$. The IR, ${ }^{1} \mathrm{H}$ NMR, and mass spectra and the TLC behaviors of $(-)-23$ proved identical with those of $(-) \cdot \alpha$-bromocoriamyrtin ${ }^{25}$ prepared from natural coriamyrtin.
$(+)$-Coriamyrtin 2. As described for the conversion of $(-)-19$ to $(-)-1$, $(-)-23(4.0 \mathrm{mg}, 0.011 \mathrm{mmol})$ was converted to $(+)-2$. Purification by preparative TLC (3:1 $\left.\mathrm{CHCl}_{3}-\mathrm{EtOAc}\right)$ provided $3.1 \mathrm{mg}(99 \%)$ of (+)-2 as colorless crystals, $\mathrm{mp} 228-231^{\circ} \mathrm{C}(\mathrm{EtOH}) ;[\alpha]^{25}{ }_{\mathrm{D}}+55^{\circ}(c 0.20$, EtOH). The natural sample gave $\mathrm{mp} 227-231^{\circ} \mathrm{C}$ and $[\alpha]^{25} \mathrm{D}+55^{\circ}(c$ $0.20, \mathrm{EtOH})$. The $\mathrm{IR},{ }^{1} \mathrm{H}$ NMR, and mass spectra and the TLC behaviors (several solvent systems) of synthetic 2 proved identical in all
respects with those of natural coriamyrtin．
Acknowledgment．We thank Professors D．Arigoni（E．T．H．）， G．Jommi（University of Milan），and T．Okuda（Okayama University）for providing reference samples of natural coriamyrtin．

Registry No．（－）－1，17617－45－7；（＋）－2，2571－86－0；（土）－3，90742－33－9； （ \pm ）－4， $90122-93-3 ;(\pm)-5 a, 90122-94-4 ;(\pm)-5 b, 90122-95-5 ;(\pm)-6 a$,

90821－12－8；（ \pm ）－6b，90821－13－9；（ \pm ）－7，90821－14－0；（ \pm ）－8，90123－00－5 （ \pm ）－9，90123－01－6；$(\pm)-10,90192-36-2 ;(\pm)-11,90742-34-0 ;(\pm)-12$ ， 90123－03－8；（土）－13，90123－05－0；$(+)-13,90192-37-3 ;(-)-14,90123-$ 06－1；（－）－15a，90123－07－2；15b，90192－38－4；（－）－16a，90123－08－3；16b （isomer 1），90821－87－7；16b（isomer 2），90821－15－1；（－）－17，90742－35－1； （－）－18，90123－10－7；（－）－19，20744－71－2；（－）－20，90123－12－9；（－）－21， 90123－13－0；（－）－22，90123－14－1；（－）－23，90192－39－5；（土）－ii，51242－43－1； （土）－iii，90742－36－2．

Synthesis of a Dodecaribonucleotide，GUAUCAAUAAUG， by Use of＂Fully＂Protected Ribonucleotide Building Blocks

Takashi Kamimura，Masahiko Tsuchiya，Ken－ichi Urakami，Koji Koura，Mitsuo Sekine， Kazuko Shinozaki，${ }^{\dagger}$ Kin－ichiro Miura，${ }^{\dagger}$ and Tsujiaki Hata＊
Contribution from the Department of Life Chemistry，Tokyo Institute of Technology，Nagatsuta． Midoriku，Yokohama 227，Japan，and the Department of Industrial Chemistry．Faculty of Engineering．The University of Tokyo．Hongo．Bunkyoku 113，Japan．
Received November 28，1983．Revised Manuscript Received March 6， 1984

Abstract

The fully protected ribonucleotide monomer units（17，19，26，and 32）have been synthesized in excellent overall yields from unprotected ribonucleosides．Several carbamoyl groups were tested for protection of the guanosine base moiety． Finally，the diphenylcarbamoyl group was chosen and O^{6}－（diphenylcarbamoyl）－N^{2}－propionylguanosine was readily prepared in high yield and converted to the guanosine units 12 and 17．The uridine unit 19 was prepared by the acylation of the previous unit 18 with anisoyl chloride in the presence of $i-\mathrm{Pr}_{2} \mathrm{EtN}$ ．In the case of the adenosine and cytidine units（ $\mathbf{2 6}$ and $\mathbf{3 2}$ ），the regioselective 2^{\prime}－O－tetrahydropyranylation was involved in their syntheses．These＂perfectly＂protected monomer units have successfully been utilized in the synthesis of GUAUCAAUAAUG，a modified 5^{\prime}－terminal structure，of brome mosic virus （BMV）mRNA no． 4 filament．The dodecamer chain was elongated by fragment condensation from the $3^{\prime}-5^{\prime}$ direction．The yields of the oligomer blocks have proved to be dramatically high because no side reactions occurred during the condensation reactions．Indeed，the final coupling to give the target 12 －mer was achieved in 91% yield．The deprotection of the fully protected in the usual manner gave GUAUCAAUAAUG in ca． 30% yield．

Current progress in molecular biology is due partly to the continuous development in the chemical synthesis of oligo－ nucleotides．${ }^{1}$ In a recent study，we have faced the serious side reactions resulting from the reactive amide functions of nucleoside base residues．Similar observations have been reported in a number of laboratories．${ }^{2}$ This problem is more serious in the synthesis of oligoribonucleotides than that of oligodeoxyribo－ nucleotides，because the condensation reaction requires longer periods of time owing to the steric effect of 2^{\prime}－hydroxyl protecting groups．Several protecting groups have recently been proposed to overcome the inevitable side reactions．${ }^{3-6}$ In previous papers，${ }^{7,8}$ we have demonstrated the utility of the complete protection for the guanine ${ }^{7 a-c}$ and uracil ${ }^{8}$ residues．

In this paper，we report a new strategy of introducing the protecting groups to the amide functions of the guanine and uracil residues and its application to the synthesis of GUAU－ CAAUAAUG，a modified 5^{\prime}－terminal dodecaribonucleotide se－ quence of BMV mRNA filament，${ }^{9}$ no． 4 ，which has C in place of U at the fifth position from the 5^{\prime}－terminus and is expected to bind more tightly to 18 S rRNA than the original sequence （Figure 1）．

Results and Discussion

We have recently described a general method for the synthesis of oligoribonucleotides by use of S, S－diphenyl N－（4－meth－ oxytrityl）－2＇－O－（tetrahydropyranyl）－5＇－O－（4，4＇－dimethoxytrityl）－ ribonucleoside－ 3^{\prime}－phosphorodithioates as the key intermediates．${ }^{10}$ Although a nonaribonucleotide，GpUpApUpUpApApUpAp，was

[^3]successfully obtained by this method，we have encountered base modifications on the guanosine and uridine residues throughout
（1）（a）Amarnath，V．；Broom，A．D．Chem．Rev．1977，77，183．（b）Reese， C．B．Tetrahedron 1978，34，3143．（c）Ikehara，M．；Ohtsuka，E．；Markham， A．F．Adv．Carbohydr．Chem．Biochem．1978，36，135．（d）Wu，R．；Bahl，C． P．；Narang，S．A．Prog．Nucleic Acid Res．Mol．Biol．1978，21，101．（e） Itakura，K．；Riggs，A．D．Science（Washington，D．C．）1980，209，1401．（f） Narang，S．A．Tetrahedron 1983，39，3．（g）Davies，J．E．；Gassen，H．G．； Angew．Chem．，Int．Ed．Engl．1983，22，13．（h）Ohtsuka，E．；Ikehara，M．； Soll，D．Nucleic Acids Res．1982，10， 6553.
（2）（a）Reese，C．B．；Ubasawa，A．Tetrahedron Lett．1980，21，2265．（b） Reese，C．B．；Ubasawa，A．Nucleic Acids Symp．Ser．1980，No．7，s5．（c） den Hartog，J．A．J．；Wille，G．；Scheublin，R．A．；van Boom，J．H．Biochem－ istry 1982，21，1009．（d）Rayner，B．；Reese，C．B．；Ubasawa，A．J．Chem． Soc．，Chem．Commun．1980，972．（e）Ohtsuka，E．；Wakabayashi．T．；Ikehara， M．Pharm．Bull．1981，29，759．（f）Divaker，K．J．；Reese，C．B．J．Chem．Soc．， Perkin Trans．1982，l，1171．（g）Sund，W．L．Nucleic Acids Res．1981，9， 6139．（h）Sung，W．L．；Narang，S．A．Can．J．Chem．1982，60，111．（i）Sung， W．L．J．Org．Chem．1982，47，3623．（j）Bridson，P．K．；Markiewicz，W．； Reese，C．B．J．Chem．Soc．，Chem．Commun．1977，477，791．（k）Takaku， H．；Kamaike，K．；Kasuga，L．J．Org．Chem．1982，47， 4937.
（3）Jones，S．S．；Reese，C．B．；Sibanda，S．；Ubasawa，A．Tetrahedron Lett． 1981，22， 4755.
（4）（a）Trichtinger，T．；Charubala，R．；Pfleiderer，W．Tetrahedron Lett． 1983，24，711．（b）Gaffney，B．L．；Jones，R．A．Ibid．1982，23，2257．（c） Hmmelsbach，F．；Pfleiderer，W．Ibid．1983，3583．（d）Schulz，B．S．；Pfleid－ erer，W．Ibid．1983， 3587.
（5）（a）Watkins，B．E．；Rapoport，H．J．Org．Chem．1982，47，4471．（b） Watkins，B．E．；Klely，J．S．；Rapoport，H．J．Am．Chem．Soc．1982，104， 5703.
（6）Welch，C．J．；Chattopadhyaya，J．Acta Chem．Scand．，Ser．B 1983， B37， 147.
（7）（a）Sekine，M．；Matsuzaki，J．；Satoh，M．；Hata，T．J．Org．Chem．1982， 47， 571 ．（b）Sekine，M．；Matsuzaki，J．；Hata，T．Tetrahedron Lett．1982，23， 5287．（c）Kamimura，T．；Tsuciniya，M．；Koura，K．；Sekine，M．；Hata，T．Ibid． 1983，24， 2775.

[^0]: (1) Boullay, P. F. G. Ann. Chim. Phys. 1811, 80, 209.
 (2) (a) Conroy, H. J. Am. Chem. Soc. 1951, 73, 1889; 1952, 74, 491, 3046; 1957, 79, 1726, 5550. (b) Craven, B. M. Tetrahedron Lett. 1960, No. 19, 21.
 (3) (a) Nistri, A.; Constanti, A. In "Progress in Neurobiology"; Pergamon Press Ltd.: Oxford, 1979; Vol. 13, pp 117-235. (b) Aickin, C. C.; Deisz, R. A.; Lux, H. D. In "Amino Acid Neurotransmitters"; Raven Press: New York, 1981, pp 301-307.
 (4) (a) Riban, M. J. Bull. Soc. Chim. Fr. 1864, I, 87. (b) Kariyone, T.; Sato, T. Yakugaku Zasshi 1930, 50, 106.

[^1]: (10) Yamada, K.; Nagase, H.; Hayakawa, Y.; Aoki, K.; Hirata, Y. Tetrahedron Lett. 1973, 4963.
 (11) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
 (12) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647.
 (13) (a) Vedejs, E.; Engler, D. A.; Telschow, J. E. J. Org. Chem. 1978, 43, 188. (b) Mimoun, H.; Seree de Roch, L.; Sajus, L. Bull. Soc. Chim. Fr. 1969, 1481.
 (14) Without protection of the tert-hydroxyl group in 7 as methyl ether, the bridgehead hydroxylation proceeded in very poor yield.
 (15) In contrast to 8 , no bridgehead hydroxylation occurred in the conformationally flexible bicyclo[3.2.1]octan-2-one (ii) under conditions $8 \rightarrow$ 9. Nickon et al. reported that the bridgehead deuteration took place more readily in the boat-form locked bicyclo[3.2.1]octan-2-one than in the corresponding, conformationally flexible one: Nickon, A.; Covey, D. F.; Huang, F.-c.; Kuo, Y.-N. J. Am. Chem. Soc. 1975, 97, 904.

[^2]: (21) When TsCl or MsCl was employed, selective monosulfonylation at the primary hydroxyl group of $(+)-13$ could not be achieved.
 (22) The isomer $\mathbf{1 5 b}$ was also conveniently converted into (-)-1 and (+)-2 via α-bromopicrotoxinin (the C-8 epimer of (- -19) and β-bromocoriamyrtin (the $\mathrm{C}-8$ epimer of $(-)-23$), respectively, in comparable yields by employing the same sequence of reactions as in the case of $(-)-15 a$.
 (23) Carlsen, P. H.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936.
 (24) Meyer, R. J.; Bruger, P. Chem. Ber. 1898, 31, 2958. Horrmann, P. Ibid. 1912, 45, 2090.

[^3]: ${ }^{+}$The University of Tokyo．
 ＊Tokyo Institute of Technology．

